
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2743
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Massive Multiplayer Online Game Using SOA
Web Services

Jashanpreet Singh Chandni Dhawan
Research scholar Research scholar

Abstract--In recent times Massive Multiplayer Online Game has appeared as a computer game that enables hundreds of players from all
parts of the world to interact in a game world at the same time instance. Current architecture used for MMOGs based on the classic tightly
coupled distributed system. While, MMOGs are getting more interactive same time number of interacting users is increasing, classic
implementation architecture may raise scalability and interdependence issues. This requires a loosely coupled service oriented architecture
to support evolution in MMOG application. In this paper we have proposed a service oriented architecture for massive multiplayer online
game and web services. This increases the scalability and security of the system.

Index term---Massive Multiplayer Online Game (MMOG), Web services, Service Oriented Architecture (SOA)

—————————— ——————————

1 INTRODUCTION
Online games give the player the ability to compete against
other players over a network [1]. Massively multiplayer
online game is a type of online computer game that enables
hundreds or thousands of players from various parts of the
world to simultaneously interact in a gaming environment
they are connected to via the network. Game designers
have successfully built multiplayer (MP) and massively
multiplayer online games (MMOG) using different
approaches. MMOGs were first introduced by various
companies as Massive Multiplayer Online Role Playing
Game (MMORPG). A key difference between the multi-
player (MP) online game and MMOG suggested in [1] is
scale and the associated infrastructure to support it. In MP
games, the numbers of concurrent players are between 16
and 32. The game can be played either stand-alone or in
multiplayer-network mode, and one of the players
machines acts as the server. The game duration is short-
lived and if the server crashes, the game is severely
disrupted.

————————————————
• Jashanpreet Singh is currently pursuing masters degree program in

Computer Science engineering in Lovely Professional University, India,
PH-9592039300. E-mail: jashanpreet60@gmail.com

• Chandni Dhawan is currently pursuing masters degree program in
Computer Science engineering in Lovely Professional University, India,
PH-9646109932. E-mail: chand.dhawan@gmail.com

Today MMOG’s, with hundreds of thousands of players
online at the same time; also span hundreds of servers.
Game session must last for a long time requiring it to be run
on dedicated servers equipped with a persistent database.
Network bandwidth to support the game related traffic also
comes with a cost.I proposed a game that allows users to
interact in a network. This game use both Massive
Multiplayer Online Game (MMOG) and Distributive
systems for interaction between the different users which
are playing game. The interaction between different users
and game is with the help of web services. Because web
service is the most secure medium to interact with server.
Previously the interaction between client and server was
done by the socket. The result is user make more than one
attempt which result is misuse of the game. So we see how
this problem overcomes.

2 RELATED WORK
In this section we discuss current implementation
approaches and some pros and cons of the existing MMOG
architectures.

2.1 Client-Server Architecture
Some first person shooter online games like Quake and
Doom typically use the client-server architecture. In this
architecture a single server is responsible for handling of
game states and clients. Quake II [2] like almost all virtual
reality games, also follows a popular server based topology
in which a single server maintains the state of the game

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2744
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

world. The game state is a collection of objects associated
with which a small part of the game world. These parts can
be computer controlled player, terrain etc. Functions
determine the actions of the player and allow freedom to
interact with other players. At each iteration server is
responsible for function invocation and assigning players
actions. Bharambe et. All in [3] also discusses to some
extent the scalability analysis of Quake II. This architecture
cannot be assumed to bear load of such a large number of
users.

2.2 Mirrored & Scalable client-Server Architecture
This architecture is similar to client-server architecture but
now each server maintains its own copy of game state. All
copies of game states should be identical and there is
critical requirement of synchronization between each
server. Clients are now distributed amongst a number of
servers which reduces the load on a single server. So this
architecture presents flexibility in terms of scaling. This
technique with the issue of synchronization between
servers is discussed in [4]. It is difficult to maintain this
synchronization technique when large numbers of players
are online in MMOG and the environment has become
highly dynamic. In addition since each server has a local
copy of whole game state, when network becomes highly
scalable, additional resources may be needed on the server
for brisk processing capabilities.

2.3 Peer to Peer Games
Another area of extensible research presented some of
which in [5], [6] and [7]. Game state is stored in peers and
each peer is responsible for its own region. Peer to peer
systems are not under the centralized control of the game
server. Concept of multicasting is used where client in a
periodic and distributed way send update to all other peers
involved in a game session. This architecture consumes a
lot of bandwidth too. It is also less reliable in terms of
security as global game state is stored in local peer. So
malicious peers can modify the game state and propagate
to other peers. A specific middle-ware is also designed in
[9] to work between application and network layer. This
layer is specific to peer to peer games and very much
application specific considering QoS concerns.

2.4 Distributed Deployment Techniques
Some research designs including specific middle-ware
design techniques have used server clusters to improve the
scaling of server oriented design. Although server control is
desirable for tight administrative policies in some cases, a
distributed architecture can address many challenges. As
discussed in previous section, scaling is the critical issue for

MMOG which can be well addressed having distributed
architecture. Single point of failure risk in case of client-
server architecture can also be eliminated by distributed
architecture. Such design techniques are presented in [8],
[9] and [10]. Main idea is to take advantage from locality of
interest to distribute the game across several game servers
and reduce computational constraints on each single server
as well as bandwidth requirement. These designs give
ability to handle a very large number of simultaneous users
and provide enough computational capability to simulate
the gaming algorithms. Distributed design can make use of
third party server deployment also but comes with inter-
node communication costs and latencies. These distributed
architectures belong to tightly coupled systems making
strong assumptions about the interface of interconnected
components. So changes in one component’s interface
reflect it to the entire components interface having
significant impacts on all the components.
 As a result these systems are more difficult to modify
and they require a retest of the entire components
associated with the same interface. These systems also
suffer limitations in independent and incremental
development, lack of support to impedance mismatch and
no dynamic real time adaptation. In each game server
assigns dynamic microcells, each of which contains a very
small portion of the large game state. The Microcells can be
distributed between servers to balance game load
efficiently.

3 PROPOSED WORK
Game Server: It is a simple online game server that allows
user to play single player or multiplayer games.

Game Client: This server deals with the information related
to the player or client. Main purpose of this server is to
want register user, which communicate with the Game
servers.

Game Engine: Provide the gaming interface to the game
client where client or user can play our game.

In the figure 3.1 a server is connected to the entire game
client. Firstly we start a server. When a server is start they
appear a message “Server Is Started” when a new player
wants to enter in game. A request is made by the client to
server. This request is transfer to the server.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2745
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure 3.1

A server responds back to the client. A special web service
is launch and appear a client game interface to the player

In figure 3.2 tell us about how game client works. A client
will be first registered, than only he can play the game.

Figure 3.2

If the game is presently running then client or user
information is send to the server by the user interface. This
information is shared by the server to all the other users.
Which are playing the game. The game is presently not
running than it will stop all the services after sending all
information to the server. Once this is done the user gets. If
the player want to register than he play the game.
Otherwise a game is not played by the player. In figure we
see se a game client is connected to the server. Server

provides the interface to the client. Game engine is helpful
to playing the game. Now we break down large
applications into smaller modules as services and unify
different processes. Game server, game client and game
engine are the smaller modules. The new user interface
information. This information is update rapidly to the
server when game is being played.

4 RESULTS AND DISCUSSION

Sr. No.
Distributive

System SOA

Implementation Easy Easy

Stability Lesser Higher

Security High risk Secure

Scalability Low High

Table 4.1
If we talk about the implementation part, services oriented
architecture (SOA) provides us to make an application and
it breaks down large applications into smaller modules as
services and different processes. Different groups of people
both inside and outside of system can use these
applications. The problem like heterogeneous system is
removed by services oriented architecture implementation.

Scalability: scalability as another important issue in
multiplayer online games, by building the different module
like game server, game client our game engine, these also
remove the scalabity. If we want change in module it will
be easily changed or increase which will overcome the
scalability problem.

Security: it is main issue in the massive multiplayer online
game. Because we exchange the sensitive information to the
users, lots of information is bye pass to the other user. So as
a security purpose we use the web services.web services is
the most secure medium to exchange information from one
system to another.web services passes the information into
xml format. This is readable by every system. So as
compare to distributed system a soa provide the high
security.

5 CONCLUSIONS AND FURTHER WORK
MMOG architecture require much more than classic tightly
coupled distributed services. In this paper we have
proposed a service oriented architecture for the deployment
of MMOGs. Such architecture provides loosely coupled
distributed services. Our proposed architecture achieves
much of its capabilities from an underline ensures service

Start

Register

Get UI

Update UI

Send UI
User Info
to Sever

Start

Is
Game

running

Stop

Yes

No

Server

Game
Client

Game
Client Game

Client

Gaming
Engine

Gaming
Engine

Gaming
Engine

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 2746
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

oriented. For the scheme presented in this paper we
considered web services standards in distributed system.
To demonstrate the capabilities of our proposed loosely
coupled service oriented architecture, we implemented a
services oriented architecture web services. The ease with
which a new process can integrate in the implemented
prototype and level of independence available to the
processes, show the usefulness of such architecture. Due to
this architecture the application is more scalable, stable and
secure.

In future we can provide more web services to massive
multiplayer online game to enhance its functionality.
Future work will concentrate on extending our architecture
for MMOG.

6 ACKNOWLEDGMENT
Foremost, I would like to express my sincere gratitude to
my advisor Asst. Prof. Krishan Bansal for the continuous
support of my research, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance helped
me in all the time of research and writing of this paper. I
could not have imagined having a better advisor and
mentor for my study. Also I thank my friends in Lovely
Professional University: Chandni Dhawan, Akhil Sharma,
Kulwinder Singh, and Abhay Puri who has helped me in
every possible way.

Last but not the least, I would like to thank my family: my
parents Dr. Bhupinder Singh and Gurjeet Kaur, for giving
birth to me at the first place and supporting me spiritually
throughout my life.

REFERENCES
1. C. E. Sharp and M. Rowe. “Online games and e-

business: Architecture for integrating business models
and services into online games”, IBM Systems Journal,
Volume 45, Nov 1, 2006.

2. Quake II.
http://www.idsoftware.com/games/quake/quake2/

3. A. Bharambe, J. Pang and S. Seshan, “Colyseus: a
distributed architecture for online multiplayer games”,
Proceedings of the 3rd conference on Networked
Systems Design & Implementation, p.12-12, May 08-10,
2006, San Jose, CA.

4. Cronin E., Kurc A. R., Filstrup B., Jamin S., “An
Efficient. Synchronization Mechanism for Mirrored
Game Architectures”, in proceedings of ACM net
games, April 2002.

5. R. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda,
J. Pang, S. Seshan, X. Zhuang, “Donnybrook: enabling
large-scale, high-speed, peer-to-peer games”,
SIGCOMM 2008: pp 389-400.

6. KNUTSSON, B. ET AL. “Peer-to-peer support for
massively multiplayer games”. In INFOCOM, July
2004.

7. H. Jin, H. Yao, X. Liao, S. Yang, W. Liu and Y. Jia,
“PKTown: A Peer-to-Peer Middleware to Support
Multiplayer Online Games”, Multimedia and
Ubiquitous Engineering, 2007. MUE '07, international
Conference on, April 2007.

8. M. Assiotis and V. Tzanov, “A distributed architecture
for MMORPG”, Proceedings of 5th ACM SIGCOMM
workshop on network and system support for games,
2006.

9. C. G. Dickey, D. Zappala, V. Lo, “Distributed
architecture for Massively-Multiplayer Online Games”,
ACM NetGames Workshop, August, 2004.

10. A. Bharambe, J. Pang, S. Seshan, “Colyseus: a
distributed architecture for online multiplayer games”,
Proceedings of the 3rd conference on Networked
Systems Design & Implementation, 2006.

IJSER

http://www.ijser.org/
http://www.idsoftware.com/games/quake/quake2/

	1 Introduction
	2 Related Work
	2.1 Client-Server Architecture
	2.2 Mirrored & Scalable client-Server Architecture
	2.3 Peer to Peer Games
	2.4 Distributed Deployment Techniques

	3 Proposed Work
	6 ACKNOWLEDGMENT
	REFERENCES

